

Python Tricks: The Book

Dan Bader

For online information and ordering of this and other books by Dan
Bader, please visit realpython.com. Formore information, please con-
tact Dan Bader at info@realpython.com.

Copyright © Dan Bader (realpython.com), 2016–2018

ISBN: 9781775093305 (paperback)

ISBN: 9781775093312 (electronic)

Cover design by Anja Pircher Design (anjapircher.com)

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Dan Bader with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for your
personal enjoyment only. This ebookmaynot be re-sold or given away
to other people. If you would like to share this book with another per-
son, please purchase an additional copy for each recipient. If you’re
reading this book and did not purchase it, or it was not purchased
for your use only, then please return to realpython.com/pytricks-book
and purchase your own copy. Thank you for respecting the hard work
behind this book.

https://realpython.com/
https://realpython.com/
http://anjapircher.com
https://realpython.com/pytricks-book

What Pythonistas Say About Python Tricks: The Book

”I love love love the book. It’s like having a seasoned tutor explain-
ing, well, tricks! I’m learning Python on the job and I’m coming from
Powershell, which I learned on the job—so lots of new, great stuff.
Whenever I get stuck in Python (usually with Flask blueprints or I feel
like my code could be more Pythonic) I post questions in our internal
Python chat room.

I’m often amazed at some of the answers co-workers give me. Dict
comprehensions, lambdas, and generators often pepper their feed-
back. I am always impressed and yet flabbergasted at how powerful
Python is when you know these tricks and can implement them
correctly.

Your bookwas exactlywhat Iwanted to help getme fromabewildered
Powershell scripter to someonewho knows how andwhen to use these
Pythonic ‘tricks’ everyone has been talking about.

As someone who doesn’t have my degree in CS it’s nice to have the text
to explain things that others might have learned when they were clas-
sically educated. I am really enjoying the book and am subscribed to
the emails as well, which is how I found out about the book.”

—Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

”I first heard about your book from a co-worker who wanted to
trick me with your example of how dictionaries are built. I was
almost 100% sure about the reason why the end product was a much
smaller/simpler dictionary but I must confess that I did not expect
the outcome :)

He showed me the book via video conferencing and I sort of skimmed
through it as he flipped the pages for me, and I was immediately curi-
ous to read more.

That same afternoon I purchasedmy own copy and proceeded to read
your explanation for the way dictionaries are created in Python and
later that day, as Imet a different co-worker for coffee, I used the same
trick on him :)

He then sprungadifferent question on the sameprinciple, and because
of the way you explained things in your book, I was able to not simply
guess the result but to correctly answer what the outcome would be.
That means that you did a great job at explaining things :)

I am not new in Python and some of the concepts in some of the chap-
ters are not new to me, but I must say that I do get something out of
every chapter so far, so kudos for writing a very nice book and for do-
ing a fantastic job at explaining concepts behind the tricks! I’m very
much looking forward to the updates and Iwill certainly letmy friends
and co-workers know about your book.”

—OgMaciel, Python Developer at Red Hat

”I really enjoyed reading Dan’s book. He explains important Python
aspects with clear examples (using two twin cats to explain ‘is‘ vs ‘==‘
for example).

It is not just code samples, it discusses relevant implementation details
comprehensibly. What really matters though is that this book makes
you write better Python code!

The book is actually responsible for recent new good Python habits I
picked up, for example: using custom exceptions and ABC’s (I found
Dan’s blog searching for abstract classes.) These new learnings alone
are worth the price.”

— Bob Belderbos, Engineer at Oracle & Co-Founder of PyBites

This is a sample from “Python Tricks: The Book”
The full version of the book includes many more Python Tricks that
will teach you the depths and quirks of Python with fun and easy to
understand examples and explanations.

If you enjoyed the sample chapters you can purchase a full
version of the book at realpython.com/pytricks-book.

https://realpython.com/pytricks-book

Contents

Contents 6

Foreword 9

1 Introduction 11
1.1 What’s a Python Trick? 11
1.2 What This Book Will Do for You 13
1.3 How to Read This Book 14

2 Patterns for Cleaner Python 15
2.1 Covering Your A** With Assertions 16
2.2 Complacent Comma Placement 25
2.3 Context Managers and the with Statement 29
2.4 Underscores, Dunders, and More 36
2.5 A Shocking Truth About String Formatting 48
2.6 “The Zen of Python” Easter Egg 56

3 Effective Functions 57
3.1 Python’s Functions Are First-Class 58
3.2 Lambdas Are Single-Expression Functions 68
3.3 The Power of Decorators 73
3.4 Fun With *args and **kwargs 86
3.5 Function Argument Unpacking 91
3.6 Nothing to Return Here 94

6

Contents

4 Classes & OOP 97
4.1 Object Comparisons: “is” vs “==” 98
4.2 String Conversion (Every Class Needs a __repr__) . 101
4.3 Defining Your Own Exception Classes 111
4.4 Cloning Objects for Fun and Profit 116
4.5 Abstract Base Classes Keep Inheritance in Check . . . 124
4.6 What Namedtuples Are Good For 128
4.7 Class vs Instance Variable Pitfalls 136
4.8 Instance, Class, and Static Methods Demystified . . . 143

5 Common Data Structures in Python 153
5.1 Dictionaries, Maps, and Hashtables 156
5.2 Array Data Structures 163
5.3 Records, Structs, and Data Transfer Objects 173
5.4 Sets and Multisets 185
5.5 Stacks (LIFOs) . 189
5.6 Queues (FIFOs) . 195
5.7 Priority Queues . 201

6 Looping & Iteration 205
6.1 Writing Pythonic Loops 206
6.2 Comprehending Comprehensions 210
6.3 List Slicing Tricks and the Sushi Operator 214
6.4 Beautiful Iterators 218
6.5 Generators Are Simplified Iterators 231
6.6 Generator Expressions 239
6.7 Iterator Chains . 246

7 Dictionary Tricks 250
7.1 Dictionary Default Values 251
7.2 Sorting Dictionaries for Fun and Profit 255
7.3 Emulating Switch/Case Statements With Dicts 259
7.4 The Craziest Dict Expression in the West 264
7.5 So Many Ways to Merge Dictionaries 271
7.6 Dictionary Pretty-Printing 274

7

Contents

8 Pythonic Productivity Techniques 277
8.1 Exploring Python Modules and Objects 278
8.2 Isolating Project Dependencies With Virtualenv . . . 282
8.3 Peeking Behind the Bytecode Curtain 288

9 Closing Thoughts 293
9.1 Free Weekly Tips for Python Developers 295
9.2 PythonistaCafe: A Community for Python Developers 296

8

Foreword

It’s been almost ten years since I first got acquainted with Python as a
programming language. When I first learned Python many years ago,
it was with a little reluctance. I had been programming in a different
language before, and all of the sudden at work, I was assigned to a
different team where everyone used Python. That was the beginning
of my own Python journey.

When I was first introduced to Python, I was told that it was going to
be easy, that I should be able to pick it up quickly. When I asked my
colleagues for resources for learning Python, all they gave me was a
link to Python’s official documentation. Reading the documentation
was confusing at first, and it really took me a while before I even felt
comfortable navigating through it. Often I found myself needing to
look for answers in StackOverflow.

Coming from a different programming language, I wasn’t looking for
just any resource for learning how to program or what classes and
objects are. I was looking for specific resources that would teach me
the features of Python, what sets it apart, and how writing in Python
is different than writing code in another language.

It really has takenmemany years to fully appreciate this language. As
I read Dan’s book, I kept thinking that I wished I had access to a book
like this when I started learning Python many years ago.

For example, one of the many unique Python features that surprised
me at first were list comprehensions. As Dan mentions in the book,

8

Contents

a tell of someone who just came to Python from a different language
is the way they use for-loops. I recall one of the earliest code review
comments I got when I started programming in Python was, “Why
not use list comprehension here?” Dan explains this concept clearly
in section 6, starting by showing how to loop the Pythonic way and
building it all the way up to iterators and generators.

In chapter 2.5, Dan discusses the different ways to do string format-
ting in Python. String formatting is one of those things that defy the
Zen of Python, that there should only be one obvious way to do things.
Dan shows us the different ways, including my favorite new addition
to the language, the f-strings, and he also explains the pros and cons
of each method.

The Pythonic Productivity Techniques section is another great re-
source. It covers aspects beyond the Python programming language,
and also includes tips on how to debug your programs, how tomanage
the dependencies, and gives you a peek inside Python bytecode.

It truly is an honor and my pleasure to introduce this book, Python
Tricks, by my friend, Dan Bader.

By contributing to Python as a CPython core developer, I get con-
nected to many members of the community. In my journey, I found
mentors, allies, and made many new friends. They remind me that
Python is not just about the code, Python is a community.

Mastering Python programming isn’t just about grasping the theoreti-
cal aspects of the language. It’s just asmuch about understanding and
adopting the conventions and best practices used by its community.

Dan’s book will help you on this journey. I’m convinced that you’ll be
more confident when writing Python programs after reading it.

—Mariatta Wijaya, Python Core Developer (mariatta.ca)

9

http://mariatta.ca/

Chapter 1

Introduction

1.1 What’s a Python Trick?
Python Trick: A short Python code snippet meant as a
teaching tool. A Python Trick either teaches an aspect of
Python with a simple illustration, or it serves as a moti-
vating example, enabling you to dig deeper and develop
an intuitive understanding.

Python Tricks started out as a short series of code screenshots that I
shared on Twitter for a week. To my surprise, they got rave responses
and were shared and retweeted for days on end.

More and more developers started asking me for a way to “get the
whole series.” Actually, I only had a few of these tricks lined up, span-
ning a variety of Python-related topics. There wasn’t a master plan
behind them. They were just a fun little Twitter experiment.

But from these inquiries I got the sense that my short-and-sweet code
exampleswould beworth exploring as a teaching tool. Eventually I set
out to create a few more Python Tricks and shared them in an email
series. Within a few days, several hundred Python developers had
signed up and I was just blown away by that response.

10

1.1. What’s a Python Trick?

Over the following days and weeks, a steady stream of Python devel-
opers reached out to me. They thanked me for making a part of the
language they were struggling to understand click for them. Hearing
this feedback felt awesome. I thought these Python Tricks were just
code screenshots, but so many developers were getting a lot of value
out of them.

That’s when I decided to double down on my Python Tricks experi-
ment and expanded it into a series of around 30 emails. Each of these
was still just a a headline and a code screenshot, and I soon realized
the limits of that format. Around this time, a blind Python developer
emailed me, disappointed to find that these Python Tricks were deliv-
ered as images he couldn’t read with his screen reader.

Clearly, I needed to invest more time into this project to make it
more appealing and more accessible to a wider audience. So, I sat
down to re-create the whole series of Python Tricks emails in plain
text and with proper HTML-based syntax highlighting. That new
iteration of Python Tricks chugged along nicely for a while. Based on
the responses I got, developers seemed happy they could finally copy
and paste the code samples in order to play around with them.

As more and more developers signed up for the email series, I started
noticing a pattern in the replies and questions I received. Some Tricks
worked well as motivational examples by themselves. However, for
the more complex ones there was no narrator to guide readers or to
give them additional resources to develop a deeper understanding.

Let’s just say this was another big area of improvement. My mission
statement for realpython.com is to help Python developers become
more awesome—and this was clearly an opportunity to get closer to
that goal.

I decided to take the best and most valuable Python Tricks from the
email course, and I started writing a new kind of Python book around
them:

11

https://realpython.com/

1.2. What This Book Will Do for You

• A book that teaches the coolest aspects of the language with
short and easy-to-digest examples.

• A book that works like a buffet of awesome Python features
(yum!) and keeps motivation levels high.

• A book that takes you by the hand to guide you and help you
deepen your understanding of Python.

This book is really a labor of love for me and also a huge experiment. I
hope you’ll enjoy reading it and learn something about Python in the
process!

— Dan Bader

1.2 What This BookWill Do for You
My goal for this book is to make you a better—more effective, more
knowledgeable, more practical—Python developer. You might be
wondering, How will reading this book help me achieve all that?

Python Tricks is not a step-by-step Python tutorial. It is not an
entry-level Python course. If you’re in the beginning stages of learn-
ing Python, the book alone won’t transform you into a professional
Python developer. Reading it will still be beneficial to you, but you
need to make sure you’re working with some other resources to build
up your foundational Python skills.

You’ll get the most out of this book if you already have some knowl-
edge of Python, and youwant to get to the next level. It will work great
for you if you’ve been coding Python for a while and you’re ready to
go deeper, to round out your knowledge, and to make your code more
Pythonic.

Reading Python Tricks will also be great for you if you already have
experience with other programming languages and you’re looking to
get up to speed with Python. You’ll discover a ton of practical tips and
design patterns that’ll make you a more effective and skilled Python
coder.

12

1.3. How to Read This Book

1.3 How to Read This Book
The best way to read Python Tricks: The Book is to treat it like a buffet
of awesome Python features. Each Python Trick in the book is self-
contained, so it’s completely okay to jump straight to the ones that
look the most interesting. In fact, I would encourage you to do just
that.

Of course, you can also read through all the Python Tricks in the order
they’re laid out in the book. That way you won’t miss any of them, and
you’ll know you’ve seen it all when you arrive at the final page.

Some of these tricks will be easy to understand right away, and you’ll
have no trouble incorporating them into your day to day work just by
reading the chapter. Other tricks might require a bit more time to
crack.

If you’re having trouble making a particular trick work in your own
programs, it helps to play through each of the code examples in a
Python interpreter session.

If that doesn’t make things click, then please feel free to reach out to
me, so I can help you out and improve the explanation in this book.
In the long run, that benefits not just you but all Pythonistas reading
this book.

13

Chapter 2

Sample Chapters

14

2.1. Object Comparisons: “is” vs “==”

2.1 Object Comparisons: “is” vs “==”
When I was a kid, our neighbors had two twin cats. They looked seem-
ingly identical—the same charcoal fur and the same piercing green
eyes. Some personality quirks aside, you couldn’t tell them apart just
from looking at them. But of course, they were two different cats, two
separate beings, even though they looked exactly the same.

That brings me to the difference in meaning between equal and iden-
tical. And this difference is crucial to understanding how Python’s is
and == comparison operators behave.

The == operator compares by checking for equality: if these cats were
Python objects and we compared them with the == operator, we’d get
“both cats are equal” as an answer.

The is operator, however, compares identities: if we compared our
cats with the is operator, we’d get “these are two different cats” as an
answer.

But before I get all tangled up in this ball-of-twine cat analogy, let’s
take a look at some real Python code.

First, we’ll create a new list object and name it a, and then define an-
other variable (b) that points to the same list object:

>>> a = [1, 2, 3]
>>> b = a

Let’s inspect these two variables. We can see that they point to
identical-looking lists:

>>> a
[1, 2, 3]
>>> b
[1, 2, 3]

15

2.1. Object Comparisons: “is” vs “==”

Because the two list objects look the same, we’ll get the expected result
when we compare them for equality by using the == operator:

>>> a == b
True

However, that doesn’t tell us whether a and b are actually pointing to
the same object. Of course, we know they are because we assigned
them earlier, but suppose we didn’t know—how might we find out?

The answer is to compare both variables with the is operator. This
confirms that both variables are in fact pointing to one list object:

>>> a is b
True

Let’s see what happens when we create an identical copy of our list
object. We can do that by calling list() on the existing list to create
a copy we’ll name c:

>>> c = list(a)

Again you’ll see that the new list we just created looks identical to the
list object pointed to by a and b:

>>> c
[1, 2, 3]

Now this iswhere it gets interesting. Let’s compare our list copy cwith
the initial list a using the == operator. What answer do you expect to
see?

>>> a == c
True

16

2.1. Object Comparisons: “is” vs “==”

Okay, I hope this was what you expected. What this result tells us
is that c and a have the same contents. They’re considered equal by
Python. But are they actually pointing to the same object? Let’s find
out with the is operator:

>>> a is c
False

Boom! This is where we get a different result. Python is telling us
that c and a are pointing to two different objects, even though their
contents might be the same.

So, to recap, let’s try and break down the difference between is and
== into two short definitions:

• An is expression evaluates to True if two variables point to the
same (identical) object.

• An == expression evaluates to True if the objects referred to by
the variables are equal (have the same contents).

Just remember to think of twin cats (dogs should work, too) whenever
you need to decide between using is and == in Python. If you do that,
you’ll be fine.

17

2.2. Complacent Comma Placement

2.2 Complacent Comma Placement
Here’s a handy tip for when you’re adding and removing items from
a list, dict, or set constant in Python: Just end all of your lines with a
comma.

Not sure what I’m talking about? Let me give you a quick example.
Imagine you’ve got this list of names in your code:

>>> names = ['Alice', 'Bob', 'Dilbert']

Whenever you make a change to this list of names, it’ll be hard to tell
what was modified by looking at a Git diff, for example. Most source
control systems are line-based and have a hard time highlightingmul-
tiple changes to a single line.

A quick fix for that is to adopt a code style where you spread out list,
dict, or set constants across multiple lines, like so:

>>> names = [
... 'Alice',
... 'Bob',
... 'Dilbert'
...]

That way there’s one item per line, making it perfectly clear which one
was added, removed, or modified when you view a diff in your source
control system. It’s a small change but I found it helpedme avoid silly
mistakes. It also made it easier for my teammates to review my code
changes.

Now, there are two editing cases that can still cause some confusion.
Whenever you add a new item at the end of a list, or you remove the
last item, you’ll have to update the comma placement manually to get
consistent formatting.

18

2.2. Complacent Comma Placement

Let’s say you’d like to add another name (Jane) to that list. If you add
Jane, you’ll need to fix the comma placement after the Dilbert line to
avoid a nasty error:

>>> names = [
... 'Alice',
... 'Bob',
... 'Dilbert' # <- Missing comma!
... 'Jane'
]

When you inspect the contents of that list, brace yourself for a sur-
prise:

>>> names
['Alice', 'Bob', 'DilbertJane']

As you can see, Python merged the strings Dilbert and Jane into Dil-
bertJane. This so-called “string literal concatenation” is intentional
and documented behavior. And it’s also a fantastic way to shoot your-
self in the foot by introducing hard-to-catch bugs into your programs:

“Multiple adjacent string or bytes literals (delimited by
whitespace), possibly using different quoting conven-
tions, are allowed, and their meaning is the same as
their concatenation.”1

Still, string literal concatenation is a useful feature in some cases. For
example, you can use it to reduce the number of backslashes needed
to split long string constants across multiple lines:

1cf. Python Docs: “String literal concatenation”

19

https://docs.python.org/3.6/reference/lexical_analysis.html#string-literal-concatenation

2.2. Complacent Comma Placement

my_str = ('This is a super long string constant '
'spread out across multiple lines. '
'And look, no backslash characters needed!')

On the other hand, we’ve just seen how the same feature can quickly
turn into a liability. Now, how do we fix this situation?

Adding themissing comma afterDilbert prevents the two strings from
getting merged into one:

>>> names = [
... 'Alice',
... 'Bob',
... 'Dilbert',
... 'Jane'
]

But now we’ve come full circle and returned to the original problem.
I had to modify two lines in order to add a new name to the list. This
makes it harder to see what was modified in the Git diff again… Did
someone add a new name? Did someone change Dilbert’s name?

Luckily, Python’s syntax allows for some leeway to solve this comma
placement issue once and for all. You just need to train yourself to
adopt a code style that avoids it in the first place. Let me show you
how.

In Python, you can place a comma after every item in a list, dict, or set
constant, including the last item. That way, you can just remember
to always end your lines with a comma and thus avoid the comma
placement juggling that would otherwise be required.

Here’s what the final example looks like:

>>> names = [
... 'Alice',

20

2.2. Complacent Comma Placement

... 'Bob',

... 'Dilbert',

...]

Did you spot the comma after Dilbert? That’ll make it easy to add or
remove new items without having to update the comma placement. It
keeps your lines consistent, your source control diffs clean, and your
code reviewers happy. Hey, sometimes themagic is in the little things,
right?

Key Takeaways
• Smart formatting and comma placement can make your list,
dict, or set constants easier to maintain.

• Python’s string literal concatenation feature can work to your
benefit, or introduce hard-to-catch bugs.

21

This is a sample from “Python Tricks: The Book”
The full version of the book includes many more Python Tricks that
will teach you the depths and quirks of Python with fun and easy to
understand examples and explanations.

If you enjoyed the sample chapters you can purchase a full
version of the book at realpython.com/pytricks-book.

https://realpython.com/pytricks-book

	Contents
	Foreword
	Introduction
	What's a Python Trick?
	What This Book Will Do for You
	How to Read This Book

	Sample Chapters
	Object Comparisons: is vs ==
	Complacent Comma Placement

